meusv_mice: estimate marginal effects at user-specified values using data objects created by mice::mice() (.mids)

meusv_mice(model, mice_object, ...)

Arguments

model

a model object, either lm() or glm(), created using the original data with missing values

mice_object

an object of class .mids, created using the mice::mice() function, containing imputed data

...

user-specified values

Value

a dataframe of the pooled marginal effect estimates (pooled using Rubin's rules)

Examples

## generate random data for example
## Create dataset with missingness
data_with_missings <- mtcars |>
 missMethods::delete_MCAR(0.3, "cyl") |>
 dplyr::mutate(cyl = as.factor(cyl))

## Create model object
lm_mod <- lm(formula = mpg ~ wt + hp + cyl + cyl*wt + disp,
             data = data_with_missings)

## Impute data
imputation <- mice::mice(data = data_with_missings, m = 5, seed = 01701)
#> 
#>  iter imp variable
#>   1   1  cyl
#>   1   2  cyl
#>   1   3  cyl
#>   1   4  cyl
#>   1   5  cyl
#>   2   1  cyl
#>   2   2  cyl
#>   2   3  cyl
#>   2   4  cyl
#>   2   5  cyl
#>   3   1  cyl
#>   3   2  cyl
#>   3   3  cyl
#>   3   4  cyl
#>   3   5  cyl
#>   4   1  cyl
#>   4   2  cyl
#>   4   3  cyl
#>   4   4  cyl
#>   4   5  cyl
#>   5   1  cyl
#>   5   2  cyl
#>   5   3  cyl
#>   5   4  cyl
#>   5   5  cyl

## Estimate and pool marginal effects at user-specified values
memice::initialize_memice()
pooled_mfx <- memice::meusv_mice(model = lm_mod, mice_object = imputation, cyl = 4, wt = 3.5)
pooled_mfx
#>   term contrast    estimate  std.error  statistic      p.value user_spec_vars
#> 1   wt    dY/dX -6.19618278 1.73872465 -3.5636366 0.0003665855        cyl, wt
#> 2   hp    dY/dX -0.02462797 0.01141123 -2.1582217 0.0309166107        cyl, wt
#> 3  cyl    6 - 4  1.64523805 2.59862192  0.6331194 0.5266556757        cyl, wt
#> 4  cyl    8 - 4  1.98701101 3.14458727  0.6318829 0.5277236573        cyl, wt
#> 5 disp    dY/dX -0.00672253 0.01372794 -0.4896969 0.6246266311        cyl, wt
#>   user_spec_vals
#> 1         4, 3.5
#> 2         4, 3.5
#> 3         4, 3.5
#> 4         4, 3.5
#> 5         4, 3.5